

McLouth Steel RI/FS Update

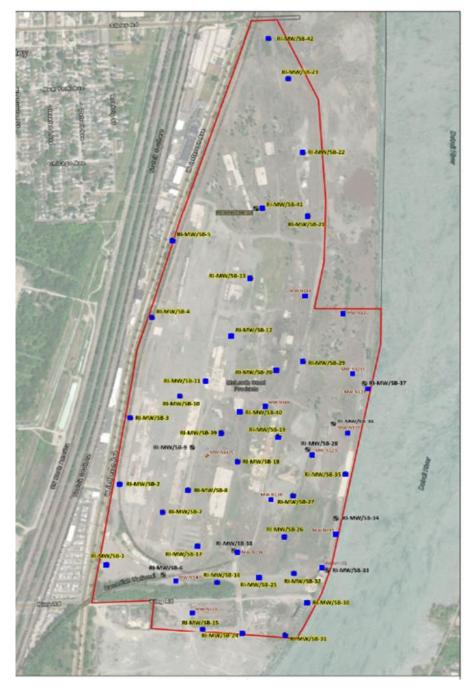
Community Advisory Group Meeting May 9, 2024

Christopher Vandegrift, Project Manager, CDM Smith Ernest Ashley, Project Technical Lead, CDM Smith Nilia Moberly Green, Remedial Project Manager, USEPA

Remedial Investigation / Feasibility Study (RI/FS)

- A Remedial Investigation is being performed to collect information on the nature and extent of contamination at the former steel plant property.
- The goals of the RI are two-fold:
 - to provide enough detail to assess the risks posed by the site to human health and the environment, and
 - to enable evaluation of potential and appropriate remedial measures in the Feasibility Study.

McLouth Steel


Three Operable Units

- Operable Unit 1 (OU1) Source Areas
 - Releases to the land, fill materials, steel plant slag, etc.
- Operable Unit 2 (OU2) Groundwater
 - Impacts to groundwater, assessment of site hydrogeology, evaluation groundwater discharge
- Operable Unit 3 (OU3) Trenton
 Channel
 - Groundwater discharge to surface water, impacts to sediment and porewater

OU1 and **OU2** - Investigation

- Work Completed
 - ✓ Soil borings/soil sampling
 - ✓ Monitoring well installation
 - ✓ Well development
 - √ Synoptic round of water level elevations
 - ✓ Groundwater sampling
 - ✓ Hydraulic testing of monitoring wells
 - ✓ Survey of new monitoring wells

OU3 - Investigation

- Work Completed
 - ✓ Sediment Sampling by Ponar dredge and Vibracore
 - ✓ Sediment Trap Sampling
 - ✓ Surface Water Sampling

- Work Pending
 - Bathymetric Survey of Trenton Channel (Water depths as well as any underwater features)

OU1 - Results - Draft Technical Memorandum

Tables:

Table 1 - Soil Sample Detections and Exceedances Summary

Table 2 - Soil Sample Detections and Exceedances - Polychlorinated Biphenyls

Table 3 - Soil Sample Detections and Exceedances - Volatile Organic Compounds

Table 4 - Soil Sample Detections and Exceedances - Semivolatile Organic Compounds

Table 5 - Soil Sample Detections and Exceedances - Pesticides

Table 6 - Soil Sample Detections and Exceedances - Dioxins/Furans

Table 7 – Soil Sample Detections and Exceedances – Inorganics (Metals and Cyanide)

Table 8 - Soil Sample Detections and Exceedances - Per- and Polyfluoroalkyl Substances

Table 9 - Soil Sample Detections and Exceedances - Vertical Distribution

Table 10 - Soil Sample Detections and Exceedances - Distribution Relative to Former Site Features

	Location				RI-SB-01	RI-SB-01	RI-SB-01	RI-SB-02	RI-SB-02	RI-SB-02	RI-SB-02	RI-SB-03	RI-SB-03	RI-SB-03	RI-SB-04	RI-SB-04	RI-SB-04	RI-SB-05
Sample #					RI-SB-01-0-0.5			RI-5B-02-0-0.5	RI-SB-02-1-2		RI-58-02A-1-2	RI-SB-03-0-0.5			RI-SB-04-0-0.5		RI-SB-04-5-6	
Start Depth					0	1	4	0	1	4	1	0	1	3	0	1	5	0
End Depth					0.5	2	5	0.5	2	5	2	0.5	2	4	0.5	2	6	0.5
Depth Unit					ft	ft	ft	ft	ft	ft	ft	ft	ft	ft	ft	ft	ft	ft
Sample Type					N	N	N	N	N	N	FD	N	N	N	N	N	N	N
Parent Sample #											RI-SB-02-1-2							
Sample Date					8/28/2023	8/28/2023	8/28/2023	8/28/2023	8/28/2023	8/28/2023	8/28/2023	8/18/2023	8/18/2023	8/18/2023	8/29/2023	8/29/2023	8/29/2023	8/16/202
Method Group Method	Analyte	CAS#	Soil PAL	Units														
014-Mclouth_Inorg SFAM01.:	Aluminum	7429-90-5	6900	mg/kg	20000 J	17000 J	3600 J	11000 J	4600 J	4400 J	4600 J	7300	5500	3400	8000 J	16000 J	16000 J	16000
014-Mclouth_Inorg SFAM01.	Antimony	7440-36-0	1.2	mg/kg	U	U	U	U	2.1 J+	22 J+	U	2.6 J+	2.1 J+	1.9 J+	U	U	U	U
014-Mclouth_Inorg SFAM01.:	Arsenic	7440-38-2	0.68	mg/kg	1.3 J	0.97 J	5.6 J	2.4 J	5.6 J	6.7 J	2.5 J	3.4	6	2.6	1.8 J	1.9 J	1.3 J	2.7
014-Mclouth_Inorg SFAM01.:	Barium	7440-39-3	288.6	mg/kg	180 J+	150 J+	100	140 J+	180 J+	910	330 J+	170	560	88	65	120	89	310
014-Mclouth_Inorg SFAM01.	Beryllium	7440-41-7	16	mg/kg	4.6 J	4.4 J	0.42 J	1.4 J	0.6 J	0.52 J	0.46 J	1.5	0.47	0.77	0.73 J	21	1J	3.2
014-Mclouth_Inorg SFAM01.:	Cadmium	7440-43-9	0.71	mg/kg	U	0.38 J	0.33 J	0.69	1.9	19	2	15	2.3	0.4 J	2	0.39 J	0.66	0.57
014-Mclouth_Inorg SFAM01.:	Calcium	7440-70-2		mg/kg	130000	120000		78000	82000	U	U	68000	15000	3600	42000	210000 J-	150000	170000
014-Mclouth_Inorg SFAM01.	Chromium	7440-47-3	0.3	mg/kg	15 J+	84 J+	25 J+	57 J+	220 J+	96 J+	86 J+	60	130	44	150 J	490 J	260 J	560 J-
014-Mclouth_Inorg SFAM01.:	Cobalt	7440-48-4	0.54	mg/kg	1.4 J+	0.91 J+	3 J+	3 J+	4.8 J+	7.6 J+	5.7 J+	4.6	7.7	18	3.9	2.7	4.4	3.6
014-Mclouth_Inorg SFAM01.	Copper	7440-50-8	51.8	mg/kg	U	U	92	51	210	830	180	210 J+	200 J+	160 J+	65	15	21	41
014-Mclouth_Inorg SFAM01.	CYANIDE	57-12-5	0.1	mg/kg	U	0.63	U	U	0.31 J	0.45 J	U	U	U	U	0.32 J	U	U	9.9 J+
014-Mclouth_Inorg SFAM01.:	Iron	7439-89-6	6	mg/kg	U	U	U	U	U	37000 J	U	16000	34000	34000	34000 J	98000 J-	12000 J	58000
014-Mclouth_Inorg SFAM01.	Lead	7439-92-1	280	mg/kg	U	13 J+	95 J+	40 J+	160 J+	730 J+	69 J+	89 J+	100 J+	80 J+	45 J+	15 J+	71 J+	380 J+
014-Mclouth_Inorg SFAM01.:	Magnesium	7439-95-4	8000	mg/kg	13000 J+	14000 J+	550 J+	11000 J+	18000 J+	1500 J+	2800 J+	8900	1400	1200	6400 J	18000 J	13000 J	29000
014-Mclouth_Inorg SFAM01.:	Manganese	7439-96-5	1	mg/kg	2300 J+	3300 J+	930 J+	1600 J+	3100 J+	1400 J+	1800 J+	1100 J+	1300 J+	260 J+	1800 J+	12000 J+	710 J+	8300
014-Mclouth_Inorg SFAM01.	Mercury	7439-97-6	0.05	mg/kg	U	U	0.026 J	U	0.09 J	0.34	0.14	0.35	0.77	1.2	U	U	U	0.082 J
014-Mclouth_Inorg SFAM01.:	Nickel	7440-02-0	52	mg/kg	U	U	29 J-	28 J-	98 J-	130 J-	75 J-	47	220	45	94 J-	76 J-	130 J-	84
014-Mclouth_Inorg SFAM01.:	Potassium	7440-09-7		mg/kg	1500 J+	1000 J+	U	720 J+	U	U	U	420 J	440	160 J	650	780	900	650
014-Mclouth_Inorg SFAM01.	Selenium	7782-49-2	0.4	mg/kg	21	1.7 J	U	0.75 J	U	4	U	2.6	U	U	U	U	U	0.95 J
014-Mclouth_Inorg SFAM01.:	Silver	7440-22-4	0.1	mg/kg	U	U	0.087 J	0.11 J	0.28 J	2	0.58	0.27 J	1.5	0.19 J	U	0.076 J	U	0.16 J
014-Mclouth_Inorg SFAM01.:	Sodium	7440-23-5		mg/kg	3100	470 J	77 J	260 J	140 J	180 J	120 J	590	520	480	180 J	500	400 J	1000
014-Mclouth_Inorg SFAM01.:	Thallium	7440-28-0	0.078	mg/kg	U	U	U	0.071 J	U	U	0.044 J	U	U	U	0.05 J	U	0.073 J	U
014-Mclouth_Inorg SFAM01.:	Vanadium	7440-62-2	39	mg/kg	6.7 J+	20 J+	11 J+	19 J+	40 J+	20 J+	4.4 J+	7.5	13	10	15	290	6.1	150
014-Mclouth_Inorg SFAM01.	Zinc	7440-66-6	119.04	mg/kg	U	U	U	U	190 J+	530 J+	120 J+	130 J+	130 J+	52 J+	99 J+	56 J+	110 J+	610 J+

Figures:

Figure 1 – Site Location Map

Figure 2 – Site Layout

Figure 3 -Soil Boring Locations

Figure 4 – Surface Soil PCBs

Figure 5 - VOC: PCE/TCE in Soil

Figure 6a - SVOC: Benzo(a)pyrene in Soil

Figure 6b - SVOC: Naphthalene in Soil

Figure 7 - Metals: Antimony in Soil

Figure 8 - Metals: Arsenic in Soil

Figure 9 - Metals: Barium in Soil

Figure 10 - Metals: Cadmium in Soil

Figure 11 – Metals: Total Chromium in Soil

Figure 12 - Metals: Cobalt in Soil

Figure 13 – Metals: Iron in Soil

Figure 14 - Metals: Lead in Soil

Figure 15 - Metals: Manganese in Soil

Figure 16 - Metals: Mercury in Soil

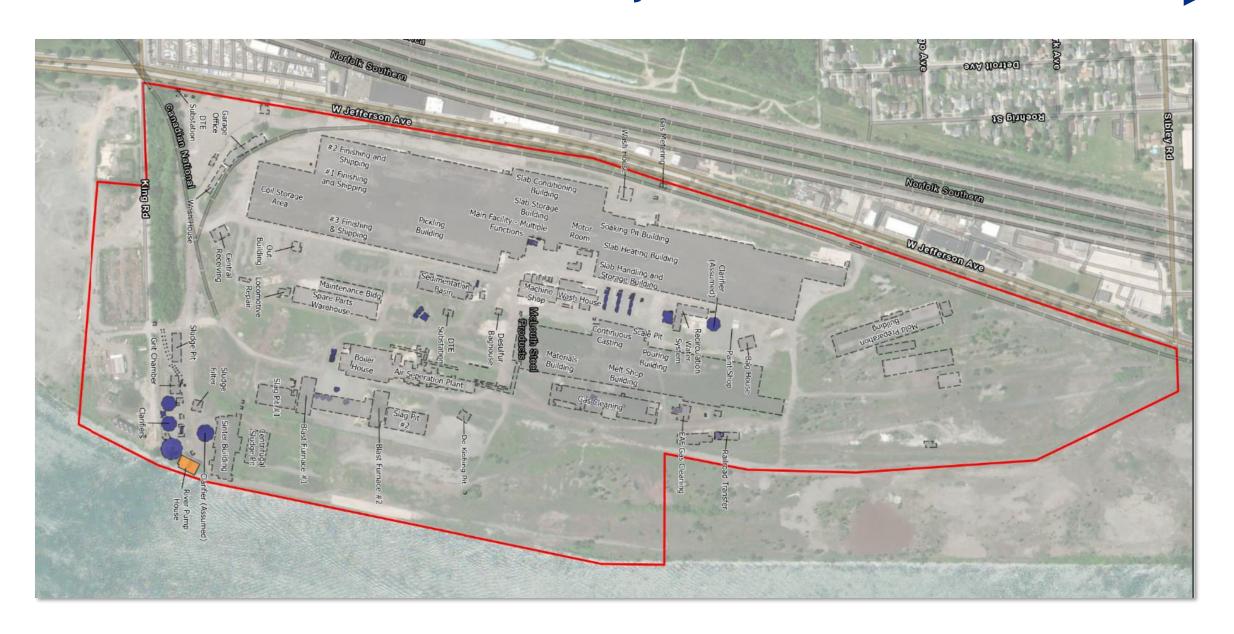
Figure 17 – Metals: Nickel in Soil

Figure 18 - Metals: Vanadium in Soil

Figure 19 – Metals: Zinc in Soil

OU1 Soil Investigations - Evaluations

- Concentrations compared to Project Action Limits the lower of the following
 - Human Health Screening Criteria
 - MI EGLE Generic Criteria for Residential Soil
 - EPA Regional Screening Levels,
 - EPA Protection of groundwater
 - Ecological Screening Criteria
 - EPA Ecological Soil Screening Levels
 - EPA Region 4 Soil Screening Values
 - EPA Region 4 Soil Screening Values


Constituent Distribution Figures – Example Legend

Antimony (PAL: 1.2 mg/kg)

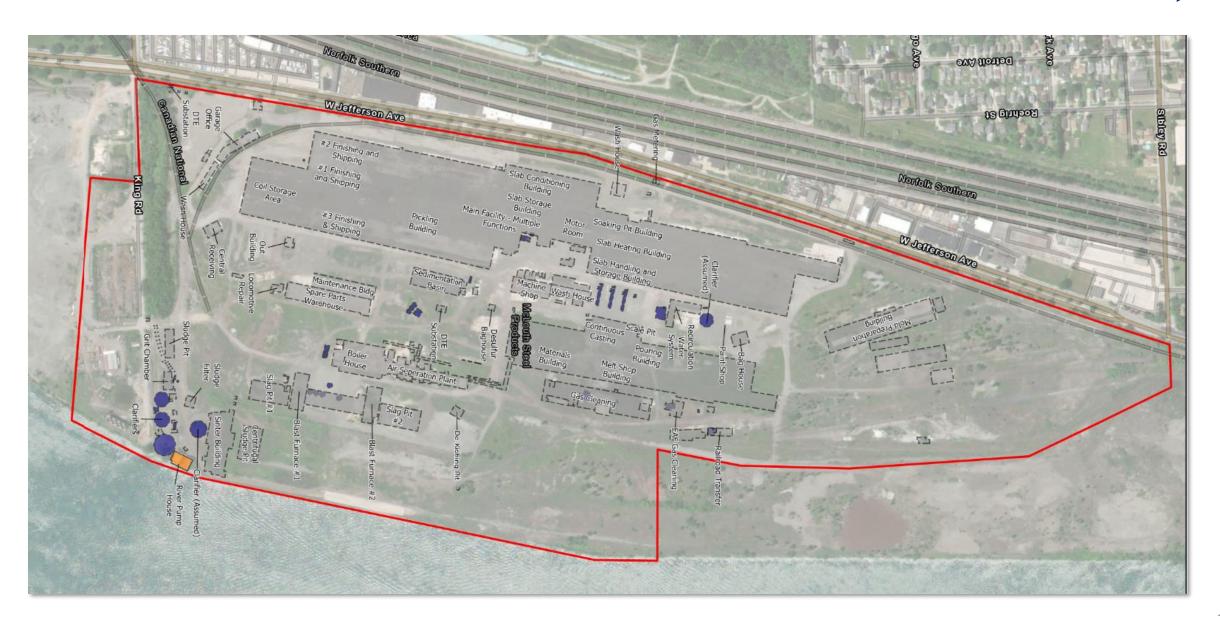
- Exceed 50x PAL
- Exceed 10x PAL
- Exceed PAL
- Below PAL
- Not Detected

McLouth Steel - Former Site Layout and Features

Constituent Distribution - CVOCs, Naphthalene and B(a)P

Constituent Distribution - PCBs, Lead and Manganese

Constituent Distribution – Antimony, Iron and Zinc



McLouth Steel - Former Site Layout and Features

North

Work in Progress

- Validation of laboratory data
- Preparation of Technical Memoranda
- Identification of data gaps and recommendations for Year 2 Field Work

What's Next - General Schedule

- 2nd Quarter 2024 Technical Memoranda
- Summer/Fall 2024 Year 2 Field Work
- 4th Quarter 2024 / 1st Quarter 2025 Evaluation of Year 2 Data
- Spring 2025 Prepare and initiate Groundwater Monitoring Program
- Spring 2025 Bedrock Aquifer Need Assessment
- Summer 2025 Preparation of RI/FS

Agency Contacts

Nilia Moberly Green

USEPA Remedial Project Manager green.nilia@epa.gov 312-353-6713

Megan Cynar

EGLE Superfund Project Manager cynarm@michigan.gov 517-256-2681

Thank you for your interest

McLouth Steel RI/FS Update

Community Advisory Group Meeting

May 9, 2024

Christopher Vandegrift, Project Manager, CDM Smith Ernest Ashley, Project Technical Lead, CDM Smith Nilia Moberly Green, Remedial Project Manager, USEPA

